Theme 2

 
 

Real-time Sensors for ions, chemical, and biological molecules.

Miniaturized chemical and biological sensors that rapidly and accurately detect and differentiate trace amount of chemical or biological species are attractive for environmental monitoring, medical diagnosis, and lab-on-a-chip analytical devices.  The objective of this research theme is to explore novel sensing platforms based on hybrid nanoparticle-CNT/graphene structures by taking advantage of electronic interactions between nanoparticles and CNT/graphene.  The hybrid platform allows for the room-temperature sensing of a wide range of chemical or biological species at high sensitivity, which is otherwise unattainable with either nanoparticle sensors or CNT/graphene sensors.  We have demonstrated a generic room-temperature gas sensing platform based on CNT/graphene-SnO2 nanoparticle hybrids for detection of low-concentration gases (e.g., CO, H2, NO2, NH3) and a versatile biosensing/water sensing platform based on CNT/graphene-Au nanoparticles for detection of proteins, DNAs, bacteria (e.g., E. coli), and heavy metal ions.  Our research focuses on detailed characterization of the sensing platforms, understanding the sensing mechanism, optimization of the fabrication process, and scale-up of the process for multi-sensor fabrication.  Our approach is to combine experiments (atomic, electronic, electrical, and spectroscopic characterizations) with theoretical modeling (e.g., DFT calculations) to establish the composition-structure-processing-sensing relationship for revealing the novel sensing mechanism.

2.1 Water sensor

watersensors-17v8vox-300x213.jpg
watersensor2-10j72p8-300x226.jpg
watersensor3-wylfyv.jpg
watersensor4-20e8d33-300x197.jpg

Representative journal publications

  1. G. H. Zhou, J. B. Chang, K. Y. Shi, S. Mao, X. Y. Sui, S. M. Cui, and J. H. Chen*, “Ultrasensitive Mercury Ion Detection Using DNA-functionalized Molybdenum Disulfide Nanosheet/Gold Nanoparticle Hybrid Field-Effect Transistor Device,” ACS Sensors 1(3), 295-302, 2016.

  2. S. Mao, J. B. Chang, G. H. Zhou, and J. H. Chen*, “Nanomaterial-enabled Rapid Detection of Water Contaminants,” Small 11(40), 5336-5359, 2015.

  3. G. H. Zhou, J. B. Chang, S. M. Cui, and J. H. Chen*, “Real-time Pb2+ Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles,” ACS Applied Materials & Interfaces 6(21), 19235-19241, 2014.

  4. J. B. Chang, S. Mao, Y. Zhang, S. M. Cui, G. H. Zhou, X. G. Wu, C. H. Yang, and J. H. Chen*, “Ultrasonic-assisted Self-assembly of Mono-layer Graphene Oxide for Detection of Escherichia Coli,” Nanoscale 5(9), 3620-3626, 2013.

  5. K. H. Chen, G. H. Lu, J. B. Chang, S. Mao, K. H. Yu, S. M. Cui, and J. H. Chen*, “Rapid Hg(II) Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles,” Analytical Chemistry 84(9), 4057-4062, 2012.

Media Coverage

NSF Science Nation: https://www.nsf.gov/news/special_reports/science_nation/leadiondetector.jsp
AICHE CEP Magazine:https://www.aiche.org/resources/publications/cep/2017/july/catalyzing-commercialization-graphene-based-sensor-monitors-water-quality-real-time

2.2 Gas sensor

Advanced-Materials-1w9c4tt-224x300.png
gas2-2md80ps-293x300.png
gas3-ppmwdx-300x255.jpg

Representative journal publications

  1. S. Mao, J. B. Chang, H. H. Pu, G. H. Lu, Q. Y. He, H. Zhang*, and J. H. Chen*, “Two-dimensional nanomaterial-based field-effect transistor for chemical and biological sensing,” Chem. Soc. Rev, in press,2017.

  2. S. M. Cui, H. H. Pu, S. A. Wells, Z. H. Wen, S. Mao, J. B. Chang, M. C. Hersam, and J. H. Chen*, “Ultrasensitive Sensitivity and Layer-dependent Sensing Performance of Phosphorene-based Gas Sensors,” Nature Communications 6, No. 3632, 2015.

  3. S. M. Cui, H. H. Pu, E. C. Mattson, Z. H. Wen, J. B. Chang, Y. Hou, C. J. Hirschmugl, and J. H. Chen*, “Engineering MoS2 Nanosheets through SnO2 Nanocrystal Decoration for Practical Sensing Applications,” Small 11(19), 2305-2313, 2015.

  4. G. H. Lu, S. Park, K. H. Yu, R. S. Ruoff, L. E. Ocola, D. Rosenmann, and J. H. Chen*, “Toward Practical Gas Sensing Using Highly Reduced Graphene Oxide: A New Signal Processing Method to Circumvent Run-to-Run and Device-to-Device Variations,” ACS Nano 5(2), 1154-1164, 2011.

  5. G. H. Lu, L. E. Ocola, and J. H. Chen, “Room-Temperature Gas Sensing through Electronic Transfer between Discrete Tin Oxide Nanocrystal and Multiwalled Carbon Nanotube,” Advanced Materials 21(24), 2487-2491, 2009. (Featured as Frontispiece)

2-3. Biosensors

biosensors-12u1zut-281x300.png
biosensors-2lr76ag-300x146.jpg

Representative journal publications

  1. Y. T. Chen, R. Ren, H. H. Pu, J. B. Chang, S. Mao*, and J. H. Chen*, “Field-Effect Transistor Biosensors with Two-dimensional Black Phosphorus Nanosheets,” Biosensors & Bioelectronics 89(1), 505–510, 2017. (Themed Issue on 2D Materials).

  2. Y. T. Chen, R. Ren, H. H. Pu, X. R. Guo, J. B. Chang, G. H. Zhou, S. Mao, M. Kron*, and J. H. Chen*, “Field-effect Transistor Biosensor for Rapid Detection of Ebola Antigen,” Scientific Reports 7: 10974, 2017.

  3. S. Q. Ci, T. Z. Huang, Z. H. Wen*, S. M. Cui, S. Mao, D. A. Steeber, and J. H. Chen*, ” Nickel Oxide Hollow Microsphere for Non-enzyme Glucose Detection,” Biosensors & Bioelectronics 54, 251-257, 2014.

  4. J. B. Chang, S. Mao, Y. Zhang, S. M. Cui, G. H. Zhou, X. G. Wu, C. H. Yang, and J. H. Chen*, “Ultrasonic-assisted Self-assembly of Mono-layer Graphene Oxide for Detection of Escherichia Coli,” Nanoscale 5(9), 3620-3626, 2013.

  5. S. Mao, G. H. Lu, K. H. Yu, Z. Bo, and J. H. Chen*, “Specific Protein Detection using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticle-antibody Conjugates,” Advanced Materials 22(32), 3521-3526, 2010.